

## **Course Contents**

- ➤ Basic dc circuit elements, series and parallel Networks
- ➤ Ohm's law and Kirchoff's laws
- ➤ Nodal Analysis
- ➤ Mesh Analysis
- ➤ Source Transformation Method
- ➤ Superposition Theory
- ➤ Thevenin's Theorem and Norton Theorem
- ➤ Maximum Power Transfer
- ➤ Alternating current Fundamentals and AC generation
- >RMS value, average value, form factor and crisp factor
- ➤Phasor concept
- >Relation between voltage and current in resistor, capacitor and inductor
- ➤ Response of RL and RC circuits
- ➤ Sinusoidal response of RLC circuit
- >Series Resonance

# Introduction

- Electrical systems pervade our lives; they are found in home, school, workplaces, factories, and transportation vehicles-everywhere.
- A circuit model is used to connect our visualization to our analysis of a physical system.
- The challenge is to develop models that will predict the physical behaviour of real components accurately and result in mathematical equations that can be solved.

# **Basic Electrical Quantities**

Basic quantities: current, voltage and power.

## Electric current:

Electric current in a wire is defined as the net amount of charge that passes through the wire per unit time, and is measured in amperes (A).

$$i = \frac{dq}{dt}$$

where

i = current in amperes

q =charge in coulombs

Irreduction t = time in sec.

- $\triangleright$  1 Ampere = 1 Coulomb per second (C/s)
- Current in circuits physically realized by movement of electrons.
- ➤ Direction of current must be specified by an arrow.

- ➤ By convention, current direction defined as flow of positive charge.
- Note that positive charge is not flowing physically.
- Electrons have negative charge.
- They move in the opposite direction of current.



➤ In general, current can be an arbitrary function of time.

Constant current is called <u>direct current</u> (DC).

Current that can be represented as a sinusoidal function of time (or in some contexts a sum of sinusoids) is called <u>alternating current</u> (AC).



# <u>Voltage</u>

Voltage is the energy absorbed or expended as a unit charge moves from one point to the other.

#### Inductor Memristo

- Analogous to pressure in hydraulic system.
- ➤ Sometimes called potential difference.
- Can be created by a separation of charge.
- ➤ Is a measure of the potential between two points.
- ➤ Voltage pushes charge in one direction.

- ➤ We use polarity (+ and on batteries) to indicates which direction the charge is being pushed
- ➤ Voltage is the energy required to move a unit charge through an element, measured in volts (V)

$$v = \frac{d\omega}{dq}$$





## **Electrical Power**

Time rate of expending or absorbing energy and is measured by Watts.

$$p = \frac{d\omega}{dt}$$

$$p = \left(\frac{d\omega}{dq}\right)\left(\frac{dq}{dt}\right) = vi$$

Capacitor dg = Cdv

where

p = power in watts

 $\omega$  = energy in Joules

t = time in seconds

q =charge in coulombs

i = current in apperes

v = voltage in volts

#### By convention

- Circuit elements that <u>absorb</u> power have a <u>positive</u> value of p.
- Circuit elements that <u>produce</u> power have a <u>negative</u> value of p.

# Elements of electrical circuits

### Active elements

Active elements are the elements that <u>can generate</u> energy or power, such as voltage and current sources.

 $\triangleright$  Ideally, a voltage source produces  $V_s$  volts regardless of the current absorbed or produced by the connected device.

$$V_s$$
  $V_s$ 

 $\triangleright$  Ideally, a current source produces  $I_s$  amps regardless of the current in the connected device.

➤In a particular circuit, there can be active elements that absorb power – for example, a battery being charged.

# Passive elements

passive elements are the elements that can <u>not generate</u> energy, such as resistors, capacitors and inductors.

#### resistors

- The ability of a material to resist (impede, obstruct) the flow charge is called its resistivity. It is represented by the letter R.
- A resistor is a circuit element that dissipates electrical energy (usually as heat)
- Real-world devices that are modeled by resistors: incandescent light bulbs, heating elements, long wires
- $\triangleright$  Resistance is measured in Ohms ( $\Omega$ )
- ➤ Resistor is indicated by the symbol —



Resistor 
$$dv = Rdv$$
  $R = \frac{\rho L}{A^{\circ}}$  Capacitor  $dq = Cdv$ 

Where

 $\rho$  resistivity in  $\Omega$ .m

L length in m

A cross-section area in m<sup>2</sup>

The conductance (G) of a pure resistor is the reciprocal of its resistance. The unit of conductance is the siemens (S) or mho  $(\[Toldot)$ ).

$$r = Ldr$$

$$G = \frac{1}{R}$$

# Ohm's Law

**Ohm's law** states that the <u>current</u> through a conductor between two points is directly <u>proportional</u> to the <u>potential difference</u> or <u>voltage</u> across the two points, and inversely proportional to the <u>resistance</u> between them.

The mathematical equation that describes this relationship is:

$$r = \frac{v}{R}$$

where v is the potential difference measured across the resistance in units of volts; i is the current through the resistance in units of amperes and R is the resistance of the conductor in units of ohms.

Two elements are in series if the current that flows through one must also flow through the other.



➤ If we wish to replace the two series resistors with a single <u>equivalent</u> resistor whose voltage-current relationship is the same, the *equivalent* resistor has a value given by

$$R_{eq} = R_1 + R_2$$





$$R_{eq} = R_1 + R_2 + R_3 + \Lambda + R_N$$
 Memoristive systems



+

 $v_2$ 

Resistor dv = Rdv

Capacitor do = Cdv

i

Ind**u**uctor

 $R_2$ 

Voltage division:

$$v_1 = v \frac{R_1}{R_1 + R_2}$$

Memristor  $d\varphi = Md\varphi$ 

$$v_2 = v \frac{R_2}{R_1 + R_2}$$

# Resistors in Parallel

- When the terminals of two or more circuit elements are connected to the same two nodes, the circuit elements are said to be in <u>parallel</u>.
- ➤ If we wish to replace the two parallel resistors with a single <u>equivalent</u> resistor whose voltage-current relationship is the same, the *equivalent* resistor has a value given by







Capacitor do = Odv

## <u>Current division:</u>

dq - idf

$$i$$

$$+$$

$$000$$

$$i_{1}$$

$$i_{2}$$

$$k_{1}$$

$$k_{2}$$

$$k_{3}$$

$$k_{4} = Ldi$$

$$k_{1}$$

$$i_1 = i \frac{R_2}{R_1 + R_2}$$

 $R_2$  Memristor  $d_{\gamma r} = M d q$ 

$$i_2 = i \frac{R_1}{R_1 + R_2}$$